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Abstract

Test time robustification seeks to increase the perfor-
mance of a pretrained model when confronted with chal-
lenging inputs such as domain shifts. Marginal entropy
minimization with one test point (MEMO) improves image
classification robustness with a full parameter update min-
imizing marginal entropy. The marginal entropy is com-
puted as the entropy of the mean output distribution with re-
spect to a group of randomly selected image augmentations.
This report finds that MEMO improves classification per-
formance on CIFAR-10 and ImageNet variant test sets with
pretrained ResNet-26 and ResNet-50 base models. Further,
analysis finds that the method most improves predictions for
samples with high initial predictive entropy which also tend
to have high marginal entropy. When the base model is un-
certain, the method can nudge the predictive distribution
in the right direction but it does not tend to improve sam-
ples where the model is confidently incorrect. Finally, im-
provements in classification performance are found to come
at a cost of increased accuracy-confidence gap, meaning
model calibration becomes worse. These trade-offs mean
that MEMO is a practical option to improve predictions
on individual unlabelled test points when calibration is
not important and increased inference cost is acceptable.
Code and replication instructions are made available at:
https://github.com/Cormac-C/memo-proj.

1. Introduction
A common challenge across deep learning is that the per-

formance of models which appear to be capable during de-
velopment degrades when they encounter novel inputs out-
side of their training distribution [14, 19]. This challenge
is relevant across domains including tabular deep learn-
ing [8, 21], natural language processing [6], and computer
vision [10].

In the case of computer vision, these changes in distribu-
tion may stem from changes in factors such as object pose,
noise, or lighting conditions. These challenges are well ac-

knowledged and have motivated advances in vision model
training through data augmentation [3, 11], novel model ar-
chitectures [17], and different training strategies [25].

However, as models continue to grow in size and pre-
training becomes a more expensive undertaking, it is often
impractical to discard an existing model and retrain from
scratch to increase robustness. Additionally, in domains
with low data availability, it may not be possible to shift
the training distribution to sufficiently capture less common
modes which are nevertheless meaningful at inference time.

In some cases where the domain shift is known in ad-
vance and well captured in data, it can make sense to fine-
tune a pretrained model. This approach is very common
in language models [2] but also applicable in vision mod-
els [16]. However, in contexts where test-domain data is
not available or the domain shift is not known in advance
finetuning is not possible; in these cases test time adapta-
tion can be an appropriate approach.

1.1. Test time adaptation

This report concerns marginal entropy minimization
with one test point (MEMO) [26], however there have been
many other approaches to test time adaptation of image
models.

The tent method proposed in [24] adapts the model to
minimize the test entropy across a small batch of inputs
thereby increasing model confidence. In contrast, MEMO
is concerned with minimizing the marginal entropy with re-
spect to augmentations of a single test point. This method
only updates normalization layers rather than the model’s
full parameters.

Schneider et al. [23] looked to update group statistics
in batch normalization operations of pretrained models to
adapt them to corrupted data. This adaptation method was
shown to be effective even with a single test point, meaning
it is compatible with MEMO. The MEMO paper explores
how the two adaptation strategies can be effectively used
together [26].

Even since MEMO’s introduction, test time adaptation
continues to be an area of interest. This is especially true in
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Figure 1. A diagram outlining the MEMO adaptation process. Flowing from left to right, a test sample is transformed with B augmentations,
the base model makes B predictions which are combined to form the marginal output distribution. The model is then updated to minimize
the marginal entropy.

the case of vision-language models (VLMs), which tend to
be large and thus impractical to retrain. Recent works build
on the marginal entropy minimization objective proposed in
MEMO to create methods suited for VLM adaptation [4].

2. MEMO method

2.1. Test time robustification

The MEMO method addresses the problem of test time
robustification, looking to improve the performance of a
pretrained model using a single unlabelled test input. The
robustification method replaces the normal model inference
process, producing an output y ∈ Y given an input x ∈ X .
This differs from fine-tuning or many-shot methods which
rely on access to input, output pairs {(xi, yi)}Ni=1 to im-
prove performance on a test input x.

The model outputs unnormalized logits z which are
mapped via softmax to the distribution pθ(y | x). In stan-
dard classification, this is treated as the conditional proba-
bility distribution of the label y given the input x and the
prediction is selected via the maximum a posteriori (MAP)
estimate ŷ = argmaxy pθ(y | x). However, it is an impor-
tant distinction that these values are often uncalibrated [5]
and thus represent an estimate of confidence but not a true
posterior uncertainty.

2.2. Marginal entropy minimization

Since the label y is unavailable for adaptation, the
method instead looks to minimize the entropy of the
model’s output distribution marginalized across augmenta-
tions. The augmentations are drawn from a set A and trans-
form the input x while preserving the relevant semantic con-
tent so the label is still y.

Since the full set of augmentations is impractically large,
the marginal distribution is approximated via Monte Carlo
sampling. B augmentations are selected from set A and
applied to the test input x producing B augmented inputs
{x̃1, ..., x̃B}. The model makes a prediction for each of the
augmented inputs and the mean conditional distribution is
then taken to be the marginal output distribution p̄θ(y | x),
as seen in Eq. (1) from [26].

p̄θ(y | x) ≜ EU(A)[pθ(y | a(x))] ≈ 1

B

B∑
i=1

pθ(y | x̃i) (1)

The marginal distribution’s entropy is a measure of the
model’s uncertainty and inconsistency with respect to the
selected augmentations. Since the augmentations were se-
lected so as not to change the output label y, reducing the
marginal entropy is desirable and can be interpreted as in-
creasing the model’s confidence and consistency across the
augmentations. As such, MEMO robustifies the model by
updating its parameters to minimize the loss function pre-
sented in Eq. (2) which is simply the marginal entropy [26].

l(θ;x) ≜ H(p̄θ(· | x)) = −
∑
y∈Y

p̄θ(y | x) log p̄θ(y | x)

(2)
After calculation of the marginal entropy, the model’s

parameters are updated using a single step of stochastic gra-
dient descent. In the original work [26], the authors explore
using multiple gradient steps per test input but find that it
hurts performance so all experiments in this report use a
single gradient step. The update procedure is described vi-
sually in Fig. 1.



(a) CIFAR-10 error rate with different numbers of augmentations. (b) CIFAR-10.1 error rate with different numbers of augmentations.

(c) ImageNet-R error rate with different numbers of augmentations. (d) ImageNet-A error rate with different numbers of augmentations.

Figure 2. Comparison of the MEMO performance with different numbers of augmentations on four CIFAR-10 and ImageNet variants.
In all cases, MEMO improves performance compared to the base model. Except for ImageNet-A, performance improves with more
augmentations, though with diminishing returns.

3. Experiments

The following experiments examine MEMO’s sensitivity
to the number of augmentations used, a key hyperparame-
ter influencing performance, as measured by test error (%).
Additionally, this report characterizes the samples whose
predictions are improved, worsened, or left unchanged by
analyzing changes to the model’s predictive entropy and the
marginal entropy across augmentations. Finally, MEMO’s
effect on the model’s calibration is measured via the ex-
pected calibration error (ECE).

3.1. Datasets

In this report, MEMO performance is evaluated us-
ing CIFAR-10 [1] and ImageNet [22] datasets and cor-
rupted variants. In both cases, the base model is pre-
trained on the original dataset then the algorithm is evalu-
ated on the corrupted variants which introduce some domain
shift. These are the same datasets used for evaluation in the
original work [26] although CIFAR-10-C and ImageNet-C
are excluded because they contain 75 corruption-severity
pairs [10] which were not feasible to evaluate within the
scope of this project.

CIFAR-10. The base model used for the CIFAR-10 ex-
periments was trained with the dataset’s 50000 training
samples. The method is evaluated with the original 10000
sample test set. Additionally, CIFAR-10.1 introduces 2000
new test images which are labeled according to the origi-
nal CIFAR-10 definitions and thus serve as a slightly more
difficult test set [20].

ImageNet. Similarly, the ImageNet base model is trained
on the full training set. Evaluation uses ImageNet-
Renditions (ImageNet-R), which contains 30000 test sam-
ples of the ImageNet classes depicted in different medi-
ums (e.g. paintings), introducing several domain shifts [9].
ImageNet-A is also used, a dataset of 7500 images which
are selected to be adversarial to the ResNet-50 model,
though in theory they are images containing ImageNet
classes [12].

3.2. Base model

All experiments use pretrained ResNet base models [7].
For the CIFAR-10 experiments, a ResNet-26 checkpoint re-
leased by the authors of the original MEMO paper [26] is



used. The ImageNet experiments use a pretrained check-
point available from TorchVision1.

Only ResNet models are investigated within the scope of
this report due to resource and time constraints though the
methodology is agnostic to the underlying base model. In
the original work, the authors demonstrate that MEMO is
also effective with a robust vision transformer (RVT) base
model [15].

3.3. Implementation details

For model parameter adaption, this report uses basic
stochastic gradient descent (SGD) as the optimizer. Within
the scope of this report, the best performing learning rates
and the number of parameter updates from the original work
are used [26].

For all experiments a single parameter update step is
used. For the ResNet-26 model, the learning rate is 5 · 10−3

and for the ResNet-50 model, the learning rate is 2.5 ·10−4.
For image augmentations, AugMix [11] is used as it was in
the original work.

I re-implement the core MEMO adaptation logic and
evaluation logic in PyTorch [18] for this project. In the in-
terest of accurate comparison, I reuse code for dataset load-
ing, image augmentations, and loading of the pretrained
base model from the MEMO repository2. In turn, the
MEMO project used snippets from the official implementa-
tions of [9, 11, 12]. More granular attribution of copied and
adapted code snippets are included inline in the repository.

3.4. Evaluation metrics

Test error (%). Classification performance is measured
with test error (%), the percentage of samples where the
model predicts an incorrect class, defined in Eq. (3).

Error (%) =
1

n

n∑
i=1

1(ŷi ̸= yi) (3)

Predictive entropy. The model’s predictive uncertainty is
characterized with the entropy of the model’s output dis-
tribution, given in Eq. (4), where pθ(y | x) are the post-
softmax values. Although the output distribution is not cal-
ibrated and thus can’t be interpreted as a true measure of
epistemic uncertainty, changes in entropy can still be inter-
preted as changes in the model’s confidence: lower entropy
corresponds with higher-confidence, more peaked predic-
tions and higher entropy corresponds with lower-confidence
predictions.

1https://docs.pytorch.org/vision/0.8/models.
html

2https://github.com/zhangmarvin/memo

CIFAR-10 CIFAR-10.1

Err. % ECE ↓ Err. % ECE ↓

ResNet-26 9.16 0.0442 18.40 0.104
+ MEMO (B=2) 8.78 0.0799 17.25 0.158
+ MEMO (B=4) 7.74 0.0712 15.80 0.145
+ MEMO (B=16) 7.41 0.0690 14.55 0.137

ImageNet-R ImageNet-A

Err. % ECE ↓ Err. % ECE ↓

ResNet-50 63.84 0.174 99.97 0.571
+ MEMO (B=2) 63.60 0.448 99.24 0.807
+ MEMO (B=4) 62.49 0.432 99.64 0.809
+ MEMO (B=16) 61.61 0.420 99.77 0.812

Table 1. Error rate and expected calibration error for the base
model and MEMO with varying numbers of augmentations eval-
uated across CIFAR-10 and ImageNet variants. Best performance
metrics are indicated in bold.

H(pθ(y | x)) = −
K∑

k=1

pθ(y = k | x) log pθ(y = k | x)

(4)

Expected calibration error (ECE). The model’s calibra-
tion is quantified with expected calibration error (ECE), de-
fined in Eq. (5) from [5]. ECE measures the gap between
the model’s confidence in an answer and its accuracy. The
models predictions are grouped into M confidence bins and
the ECE is the weighted average of the absolute accuracy-
confidence difference. Lower ECE indicates better calibra-
tion, analysis looks at how MEMO adaptation impacts the
alignment between confidence and accuracy. All ECE val-
ues reported in this report use M = 15 bins.

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (5)

3.5. Results

Classification performance. As seen in Tab. 1, adding
MEMO adaptation does improve the classification perfor-
mance across all datasets tested. For ImageNet-A, the im-
provement is negligible, as the base model and adapted
models perform near random chance for the adversarial ex-
amples. However, for the other datasets, MEMO with two
or more augmentations yields consistent improvements.

As shown in Fig. 2, increasing the number of augmenta-
tions generally improves performance. This is expected, as
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a larger number of augmentations provides a better approxi-
mation of the marginal distribution. However, the improve-
ment does plateau around eight augmentations. These ob-
servations of accuracy improvements and sensitivity to the
number of augmentations are consistent with the findings of
the original paper [26].

Success and failure cases. In Fig. 3, it is observed that the
samples which the baseline models classify incorrectly tend
to have higher predictive entropy (ie. lower confidence)
than those that are correctly classified. Further, MEMO de-
creases the predictive entropy of all samples. This effect
is consistent with the loss function defined in Eq. (2) be-
cause decreasing the predictive entropy helps minimize the
marginal entropy. Tab. 2 shows that the decrease in predic-
tive entropy is more pronounced for samples where the pre-
diction was changed (worsened and improved) between the
base model and MEMO. This aligns with the observation
that samples whose predictions change tend to have higher
marginal entropy which would lead to a stronger adaptation
signal.

Effect on calibration. Tab. 1 also shows that the appli-
cation of MEMO adaptation increases the expected calibra-
tion error of the predictions, meaning the calibration of the
models becomes worse. Based on the predictive entropy
decreases discussed above, it seems that the model is be-
ing adapted such that the confidence of its predictions in-
creases faster than its accuracy. This effect is illustrated in
the extreme with the ImageNet-A case. Although error re-
mains above 99%, the ECE rises significantly, meaning the
model becomes more confident despite continuing to per-
form poorly.

4. Discussion & Conclusion
In this report, MEMO is found to reduce classification

error rates on all four of the datasets tested. The method
does offer a test time robustification strategy that can im-
prove performance with only the unlabelled test point.

However, these gains come with a significant compu-
tational cost at inference. For a given sample, applying
MEMO with B augmentations requires B additional for-
ward passes and one backwards pass in addition to the cost
of performing the augmentations. An additional restriction
on the efficiency of this method is that the final prediction
for each test sample uses a different set of adapted weights
so there is not easy opportunity to batch the full pipeline.
With these considerations it is clear that MEMO is special-
ized to the test time robustification process where only one
test sample is available at a time.

Additionally, experiments suggest that MEMO is most
effective in improving predictions on samples which have

Figure 3. Changes in predictive entropy from the base model to
MEMO across three datasets. MEMO decreases the entropy in all
cases, correct predictions tend to have lower entropy.

high initial predictive entropy (ie. low model confidence)
and marginal entropy (ie. more variance across augmenta-
tions). In these cases, the MEMO adaptation succeeds by
nudging the predictive distribution in a better direction. It
should be noted that the failure cases of the approach have a
similar character, the samples where predictions were wors-
ened also tend to have low predictive confidence and higher
variance across augmentations. However, the MEMO adap-
tation doesn’t tend to change confident model predictions.
This should inform in which domains this technique is ap-
plied.

As discussed in the original work, the high computa-
tional costs motivate the exploration of modified methods
which selectively apply MEMO adaptation. In their Ap-
pendix A, they explore thresholding based on the marginal
entropy but find it degrades performance [26]. Based on the



Predictive Entropy Decrease MEMO (B=16) Marginal Entropy

Improved Worsened Unchanged Improved Worsened Unchanged

CIFAR-10 Original 0.643 0.514 0.096 0.833 0.941 0.220
CIFAR-10 New 0.697 0.551 0.166 0.963 1.070 0.360
ImageNet-R 1.669 1.223 1.173 3.061 3.014 2.817
ImageNet-A 0.861 N/A 1.021 3.315 N/A 2.900

Table 2. MEMO predictive entropy decrease and marginal entropy across augmentations stratified by samples where predictions were
improved, worsened, or left unchanged. Note that there are no worsened samples for ImageNet-A because the baseline error rate is nearly
100%, thus those table entries are marked N/A.

results presented in Fig. 3 and Tab. 2, it seems that a pre-
dictive entropy threshold could help target samples likely
to benefit from MEMO adaptation. The initial predictive
entropy can be calculated with a single forward pass rather
than requiring B augmentations and forward passes to com-
pute marginal entropy. Thus predictive entropy could offer
a more efficient thresholding method. This experimentation
is left to future works.

The original work also explores the idea of continuous
ad-hoc adaptation of the model. However, the adaptation
only optimizes the marginal entropy without consideration
for prediction accuracy, meaning that accumulating these
updates can harm model accuracy. In fact, in their experi-
mentation the authors report that the model collapses to al-
ways predict one class with full confidence [26]. This de-
generate solution is clearly undesirable but does minimize
the marginal entropy. This illustrates a key challenge for
continuous test time adaptation, the model must stay ac-
curate despite updating without access to ground truth la-
bels. Until this challenge is overcome, these local adap-
tation methods are inherently wasteful, calculating input-
specific model updates then discarding them.

Further, this report finds that MEMO harms the calibra-
tion of the underlying model. This should not come as
a surprise because the marginal entropy minimization in-
centivizes the model to make more confident predictions
without consideration for calibration. With these consid-
erations in mind, this method is not appropriate for applica-
tions where model calibration is an important consideration.
Exploring test time adaptation processes which maintain or
improve calibration is an interesting but challenging area
for future work, see [13] for one example.

Another direction for future analysis could look more ex-
tensively at which groups of augmentations to use. The
original work does one ablation finding AugMix to out-
perform a set of ‘standard augmentations’ [26]. However,
given the extensive number of augmentation techniques
which have been developed in the field of computer vision it
seems likely that there is more room for optimization here,
different augmentation spaces may combine with varying
degrees of success with base models that were trained dif-

ferently.
In conclusion, while MEMO does offer improved robust-

ness from a single test input, one should be mindful of the
trade-offs in inference costs and model calibration when de-
ciding if it is appropriate.
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E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. 4
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