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ABSTRACT

Tabular data remains a difficult domain for the application
of machine learning techniques, due to a lack of structure in
the data. Although deep learning methods have been applied
in recent years, gradient boosting models like XGBoost have
remained competitive in many tabular scenarios. This pa-
per investigates the performance of single-task and multi-task
XGBoost models on three mid-sized tabular datasets. Our ex-
periments yield mixed results, the multi-task models improve
performance on some tasks within some datasets but no model
dominates across all tasks and datasets. Additionally, we in-
vestigate the impact of standardizing features and targets but
find that it did not meaningfully impact performance. These
results suggest that multi-task XGBoost may offer improve-
ments in some circumstances but it should be investigated on
a case-by-case basis rather than being applied universally.

Index Terms— Multi-task learning, XGBoost, Tabular
Data

1. INTRODUCTION

In domain like computer vision and natural language process-
ing, deep learning models have been successful in exploiting
the relative positioning of data to improve performance. In
contrast, the ordering of rows and columns in tabular data
don’t tend to have meaning, making it a more challenging
domain for machine learning models. This challenge is exac-
erbated by the fact that many collections of tabular data are
relatively small [1], meaning they may not be sufficient to ef-
fectively train deep models [2].

1.1. Related Works

Despite the difficulties, there have been recent attempts to ap-
ply deep learning methods to tabular data. TabNet uses se-
quential attention to select relevant features, achieving strong
performance and interpretable models [3]. FT-Transformer
adapted the transformer architecture for tabular applications
and reported strong performance across a range of tasks [4].
More recently, TabPFN was introduced, which pretrains a

transformer model on synthetically generated datasets yield-
ing a high capacity model which can be adapted to small to
medium sized tabular datasets through in-context learning [5].

However, recent benchmarks have found that methods
based on decision tree ensembles continue to perform com-
petitively, especially when there is less data available [4][6].
Random forests use an ensemble of small tree predictors cre-
ated based on a random sampling of features, as the number
of trees increases the ensemble’s error converges to zero [7].
Even though it was first introduced in 2001, Random forests
continue to be a strong baseline of performance across a
range of domains [6]. Additionally, there are many variations
of algorithms based on gradient boosting [8] which have been
found to perform strongly including LightGBM [9], CatBoost
[10], and XGBoost [11].

Multitask learning (MTL) is a machine learning approach
that looks to improve performance of task performance by
learning related tasks in parallel with a common model [12].
There are a variety of MTL techniques that exploit differ-
ent strategies including: regularization, relationship learn-
ing, feature propagation, optimization, and pre-training [13].
MTL has been successfully used in a wide range of domains
including dense scene prediction [14], image classification
[15], and autonomous driving [16] [17].

There have been some works which bring MTL into the
tabular domain. Multi-gate Mixture-of-Experts (MMoE) used
a mixture of experts to learn task relationships to improve
multitask performance [18]. Progressive Layered Extraction
(PLE) then looked to avoid negative transfer between tasks
by separating shared and task-specific parts of the network
more explicitly [19]. More recently, Shared and Task-specific
EMbeddings (STEM) used different embeddings to look to
minimize negative transfer [20]. These works differ from the
focus of this paper as they are mostly concerned with improv-
ing recommendation systems, an application where very large
datasets are available whereas this paper focuses on mid-sized
datasets.

1.2. Problem Statement

This report investigates the performance of XGBoost [11] on
tabular multi-target regression tasks in both single-task and



multi-task settings. Additionally, we compare the impact of
standardizing input features and targets on the models’ per-
formance. This report focuses on datasets with between 100
and 1000 samples.

2. MULTI-TASK XGBOOST

2.1. XGBoost

XGBoost is a machine learning method built on tree boost-
ing. Gradient tree boosting methods combine regression trees
to produce more robust models [8]. In addition to the ef-
ficient optimization method described in Section 2.2, XG-
Boost introduced a novel approach to handling sparse data
and added compute-aware optimization to yield a very scal-
able tree boosting system [11].

Due to its efficiency and strong performance and the
release of packages across programming languages 1, XG-
Boost quickly became a popular tool in machine learning
challenges. At the time of its release, the authors reported
that 17 of 29 Kaggle challenge winners had used XGBoost
in the prior year 2015 [11]. Although deep learning methods
have risen in popularity in the intervening decade, XGBoost
remains a strong benchmark on tabular machine learning
tasks especially when there is not enough data available to
sufficiently train more modern deep learning architectures
[6].

2.2. Optimization in XGBoost

From the derivation in [11], ensemble tree models usually
minimize the regularized objective.

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (1)

where Ω(f) = γT +
1

2
λ||ω||2

Where l is the differentiable convex loss function and Ω
regularizes against model complexity. For each tree fk, T is
the number of leaves and ω are the leaf weights.

Although l is differentiable and convex, because the ex-
pression is parameterized by functions (fk), traditional opti-
mization methods are not available. Instead, gradient boost-
ing optimizes the objective iteratively. At each iteration, a
new tree, ft, is added which greedily minimizes the objec-
tive.

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (2)

To iterate more quickly, XGBoost uses the second-order
approximation which was originally introduced in [21].

1https://xgboost.readthedocs.io/en/stable/index.html

L(t) ≃
n∑

i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

(3)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)), hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1))

This approximated objective function is further simplified
by removing the constant terms.

L̃(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (4)

This objective function can be used to evaluate the quality
of different tree structures and leaf weights, enabling an exact
greedy approach to find the best model. However, this ap-
proach can quickly become computationally impractical with
larger datasets and continuous features. XGBoost offers a
more efficient approximate algorithm which uses candidate
split points to essentially discretize continuous features, fur-
ther improving the method’s efficiency [11].

2.3. Multi-output Regression in XGBoost

In the original work, XGBoost was tested on classification,
ranking, and regression tasks but there were no experiments
with a multi-output setup [11]. By default, the XGBoost
package handles multiple outputs with a separate model for
each output without information sharing between the tasks.

However, the package can be adapted to a native multi-
output setup where trees output a vector of the multiple out-
puts rather than a single value. The optimization and objective
function presented in Section 2.2 can be trivially extended to
handle vectors as predictions. In equation 3, yi and ŷ become
vectors yi and ŷ respectively and the loss function l is ex-
tended accordingly. In this case each addition of a tree no
longer greedily optimizes for a single task, rather it improves
the average loss across all the outputs.

3. EXPERIMENTAL DETAILS

3.1. Datasets

Experiments used three multi-target regression datasets from
the benchmark introduced in [22]: Jura heavy metal contam-
ination dataset (Jura), Energy building dataset (ENB), and
Airline ticket price dataset (ATP1D). These datasets were se-
lected because they have between 100 and 1000 samples, an
amount of data where gradient boosting methods like XG-
Boost have remained near the state of the art [6]. More details
on the dataset characteristics are available in Table 1.



Dataset # Samples # Features # Targets
Jura [23] 359 15 3
ENB [24] 768 8 2
ATP1D [25] 337 370 6

Table 1. Dataset characteristics

3.2. Standardization

In trials with standardization, the input features and targets
have undergone z-score standardization. Every input feature
and target value, x has been transformed to x′ with a mean of
0 and standard deviation of 1.

x′ =
x− µx

σ
(5)

Standardization could improve the performance of result-
ing models because it evens out the magnitudes of features,
approximately reducing the anisotropy of the feature and tar-
get space which can make gradient descent methods more ef-
ficient [26]. Additionally, in a multi-task setup this could help
even out the different tasks contribution to the combined loss.

3.3. Hyperparameter Search

For all trials, we conduct a hyperparameter search and report
the performance of the best model. In all cases, we vary the
number of estimators, the max tree depth, and the learning
rate; conducting a grid search across all 72 combinations of
the parameters in Table 2.

Parameter Search Space
Number of estimators 10, 50, 100, 500, 1000, 3000
Max tree depth 1, 2, 3, 5
Learning rate 0.1, 0.01, 0.001

Table 2. Hyperparameter search space

For each hyperparameter configuration, we evaluate the
model with 5-fold cross-validation, averaging the R2 values
across the five folds. For the single-task models, it is trivial
to then select the model with the highest average R2. For
the multi-task models, each model has an average R2 value
for each task so the values are combined across tasks with
a clipped L2 norm. Clipping is necessary so that extreme
negative R2 values don’t skew the comparison. The clipped
norm is defined as:

||R̃2||2 = ||max(R2, 0)||2 =

√√√√ n∑
i=1

max(R2
i , 0) (6)

There could be a risk that this approach would allow a
model to disregard one task since the worst performance for
any task is limited to 0. However it is observed that none of
the models take advantage of this.

Fig. 1. Results of XGBoost models on Jura Dataset.

Fig. 2. Results of XGBoost models on ENB Dataset.

4. RESULTS & ANALYSIS

4.1. Single-task and multi-task models

In Figure 1, we see that the single-task models outperform
the multi-task models on 2 of 3 tasks. For Co, the multi-task
models have an R2 around 0.67 and the single-task models
have an R2 around 0.72. For Cu, the multitask models have an
R2 around 0.72 and the single-task models have an R2 around
0.66. On the remaining task, Cd, the performance between
model types is very close with R2 scores close to 0.55 and
0.54 for the multi-task and single-task models respectively.

In Figure 2, we see that the performance across all model
types is saturated near an R2 of 1. This makes it difficult to
distinguish any benefits of either model type.

Figure 3 shows mixed results, in 4 of 6 tasks the multi-task
models outperform the single-task models but the opposite is
true in the remaining tasks. The magnitude of difference in
performance between model types is less than 3% in all cases.

Across the three datasets, we observe mixed results in
comparing multi-task and single-task applications of XG-
Boost. With the Jura dataset, the single-task models out-
perform on 2 of 3 tasks; with the ENB dataset, there is no



Fig. 3. Results of XGBoost models on ATP1D Dataset.

meaningful difference between multi-task and single-task
performance; with the ATP1D dataset, the multi-task strategy
improves performance on 4 of 6 tasks. From these results, we
can conclude that multi-task XGBoost may be an approach
worth exploring in some circumstances but should not be
applied blindly in place of single-task models.

4.2. Effect of standardization

Across Figures 1, 2, and 3 we can see that there is no mean-
ingful difference between the models trained with standard-
ized and non-standardized data. This suggests that the differ-
ences in magnitudes of features and targets were not imped-
ing the performance of XGBoost for these datasets. Given
the lack of benefit in terms of accuracy, the non-standardized
models would be preferred since they require less data pre-
processing.

5. CONCLUSION

In this work we find that single-task and multi-task appli-
cations of XGBoost outperform each other in certain cir-
cumstances with different datasets. Given a new dataset and
problem space, one should explore both options to determine
which approach is best for that specific application.

This report found inconclusive results with XGBoost but
there could be value in evaluating the potential of integrating
MTL into other prominent gradient boosting methods. It is
also possible that the tree ensemble models don’t have enough
capacity to learn a robust shared representation. This might
motivate further work on applying deep models to small and
mid-sized models. Future work integrating pre-training with
synthetic data like [5] into a multi-task framework would be
another promising direction for future work.
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